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Long-term properties of time series generated by a perceptron with various transfer functions
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We study the effect of various transfer functions on the properties of a time series generated by a
continuous-valued feed-forward network in which the next input vector is determined from past output values.
The parameter space for monotonic and nonmonotonic transfer functions is analyzed in the unstable regions
with the following main finding: nonmonotonic functions can produce robust chaos whereas monotonic func-
tions generate fragile chaos only. In the case of nhonmonotonic functions, the number of positive Lyapunov
exponents increases as a function of one of the free parameters in the model; hence, high dimensional chaotic
attractors can be generated. We extend the analysis to a combination of monotonic and nonmonotonic func-
tions.[S1063-651X99)02303-X

PACS numbgs): 84.35:+i, 07.05.Mh, 05.45-a

[. INTRODUCTION for a perceptron with weights composed of a single Fourier
component with an additional bias term, except where other-
One of the developing subjects in the research of neuravise mentioned. There are two main reasons behind this
networks is the analysis of time series. There are severghoice. First, this choice leads to a two-dimensional param-
approaches in this field such as prediction, characterizatiogter space £,b), gain and bias, respectively, which can be
modeling, etc. In this paper, we focus on understanding th€onveniently visualized, whereas larger parameter space is
interplay between the type of transfer function used andnore difficult to handle. Second, all the important character-
some quantitative measures of the time series generated_ iﬁfiCS are already manifested in this case. The existence of a
particular we are interested in the classification of the posbias in the weights is important for producing unstable dy-
sible types of seguences generated by the network and thé‘iﬁmlcs in the case of monotonic fUnCtiOﬂS; therefore, it is
characteristics according to the nature of the attractor of thérucial to include this parameter.
dynamics. Previous analytical studies concentrated on the The paper is organized as follows. In Sec. II, the model is
stable regime of the parameter space of feed-forward neflescribed and some of the relevant results previously ob-
works with a feedback loop that generate time seliess). tained are reviewed. In Sec. Ill the class of monotonic func-
One of the main questions we address in this paper regardi®ns, such as the hyperbolic-tangent function, is analyzed.
the behavior of the system in thastableregime and how The cases of two and three input unis=2,3, are examined
varying the transfer function affects the asymptotic behaviognd compared to previous findings. We analyze the param-
of the sequence generated by the model. eter space using numerical methods, e.g., calculating
In order to characterize the dynamical system we analyzéyapunov spectrum, attractor dimensitsee Appendix to
its properties while varying some control parameters. Ana|yjdentify stable and chaotic regions. The main conclusion is
sis of the parameter space of a map enables us to C|assify tﬂéat the model with monotonic functions is indeed rather
type of flow in phase space in the Vicinity of a given VectorSt&b'G in the sense that even in regimes where chaotic behav-
of parameters. An interesting question that arises is whethd@r can be found, the chaos is fragile and small variations of
it is possible to generate high dimensional attractors and cohe parameters drive the system to stable dynamics. In Sec.
trol their properties, e.g., the attractor dimensianglobal |V nonmonotonic functions are examined both analytically
property of the phase spacand the robustnesa local prop-  and numerically. The issue of high dimensional attractors is
erty of the parameter space treated as well as the structure of parameter space and the
As we shall see, there exists a clear distinction betweeROssibility of generating robust chaos. Finally, in Sec. V we
monotonic and nonmonotonic transfer functions, e.g., irdiscuss the case of a transfer function, which is a combina-
terms of the structure of parameter space and attractor dfion of monotonic and nonmonotonic functions. The Appen-
mension. We shall try to illuminate this phenomenon as weldix contains the technical details concerning our analysis of
as its relation to the possibility of generating robust chaosthe parameter space, which one should refer to while reading
The concept of robust chadsee[7]) is associated with an Secs. lll and IV.
attractor for which the number of positive Lyapunov expo-
nents(in a region of parameter spade larger than the num- Il. THE MODEL
ber of free(accessible parameters in the model. Moreover, Let us consider a perceptron with input units and

in the vicinity of a chaotic parameter’s vector, no periodic . his W. F . inout ¢ ¢ i ¢
attractors are found. We give strong indications to supporﬂ’e'g s W. For a given Input vector at time step

our conjecture, which states that monotonic functions are no® (Sj.i=1, ... N), the network's outpus, is given by
capable of generating robust chaos while nonmonotonic N
functions are. t ¢
. . . . Syui=f WS |, 1
The analysis presented in this paper is performed mostly out ’8121 1= @
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where is a gain parameter arfds a transfer function. The fer functions. The outpug,,; for this case is given by
input vector at timet+1 is defined by the previous output

. . . N
values in the following dynamic rule: Sf)ut=tan}‘( ,82 st}). 5)
Sit=sl,, S*l=s_,, j=2,...N. (2 =t
. L The weights consist of a single biased Fourier component as
Since the network generates an infinite sequence from ajos:
initial state, this model was denoted in previous papers as a
Sequence-Generat@Ger), e.g.,[2]. We restrict the discus-

27 )
sion to bounded, symmetric nonlinear transfer functions, i.e.Wj=aCOS<WkJ +wé|+b, j=1,...N, ¢e[—1]1].

fiR-R, |f(X)|<®, VxeR. &) (6)

In the following we sea=1 to reduce the dimensionality of
the parameter space. For the simplest case of two inputs,
=2, the equation that describes this map is simply

A prescription for the weights is given by the following
form:

+b, j=1,...N, SH1=tan[‘[[8(wlst+wzst—1)],

27
Wj:% ap coz(wkpj +7d,
whereW, i=1,2 are given by Eq(6). The special case
dpe[—1...1], (4) =1 reduces to

where{a,} are constant amplitudegk,} are positive inte- S*i=tanH{B[S!(1+b)+ S —1+Db)]}, 7
gers denoting the wave numbetsjs the bias term, ang o ) ) )
runs over the number of Fourier components composing théhich is equivalent to a physical model of a magnetic sys-
weights. In the following we investigate only the casestem. axial next-nearest-neighbor ISinGANNNI) model
rameter space as small as possible. is .capable. of_ generating stable_ attra_lctonsmtrlwal fixed

Our main concern is the differences imposed by the transPoints, periodic and quasiperiodic orbitss well as unstable
fer function on the asymptotic behavior of the time serieschaotic behavior. The commensurate phase of the map is
generated by the model. We concentrate on two classes @fésented iri9] and, therefore, will be omitted here.
functions, monotonic and nonmonotonic, which are exempli- The goal of the analysis of the parameter space is to clas-
fied in detail by hyperbolic tangent and sine functions, re-Sify the dynamics in a region of parameter space. The ana-
spectively. This model was analyzed in various cases, all optical part is unfortunately absent here due to the limitations
them in the stable regime, for moderate values of the gaifet by the transfer function. It transpires that the class of
paramete3. The other extreme3— o was also treatesee  Monotonic functions does not give rise to critical points since
[1,5]). We concentrate on the intermediate regime for whichthe first-order derivatives of the map are always positive;
unstable behavior emerges. therefore, the determinant is bounded away from zero. For

Let us review the relevant results previously obtained. Inf@rge periodic orbits, however, it can come very close to
the case of a “perceptron SGen” with general weights ancZero; therefore, the structure can be somewhat more similar
an odd transfer function, the system undergoes a Hopf bifur® maps that do contain critical pointsee discussion in Sec.
cation at some critical value of the gain parameter. The stalV). Therefore, let us turn to a numerical analysis. In order to
tionary solution above the bifurcation value is characterizedNSWer questions such as the existence of a robust chaos, the
by a quasiperiodic attractor flow governed by one of theParameter space is sampled in a high resolution, up 1@ 10
Fourier components of the power spectrum of the weightsin each direction. Figure 1 depicts a section of the parameter
hence, the attractor dimension is typically one. This type ofPace for the casg=1. The black area leads to chaotic
flow becomes unstable at higher gain value, this being th&ehavior with one positive Lyapunov exponent. This area is
focus of this paper. We should point out here that there ar80t @ compactly dense unstable region. In fact each unstable
cases for which a stable two-dimensiorfaD) attractor is  Point has stable neighbors, which lead to periodic attractors.
observed5]; nevertheless, their measure is zero. The resultd he remaining space in this region gives rise to stable attrac-
were extended to multilayer networks [ig,6] where the at-  tors. The center of the bold circle represents the point men-
tractor dimension, in the stable regime, is found to befioned in[9], which leads to chaotic behavior with the pa-
bounded in the generic case by the number of hidden unit§ameter valug 5=4.24155%=0.17881. A perusal of the
independent of the complexity of the weight vectors. figure shows that the unstable region is constructed around a
1D curve. For other choices of the phasé¢he parameters of
this curve change, not its nature. Moreover, we note that the
unstable points lead to a mixed behavior, i.e., both stable and

In this section we discuss the case of monotonic transfeunstable behavior can be obtained from the same vector of
functions. This family of functions is typical to neural net- parameters, depending on initial conditions. The dimension
works for several reasons, one of which is their biologicalof the chaotic attractors in this region was calculated using
plausibility (see, e.g.}8]). For the rest of this section we use the Kaplan-Yorke conjecturfll] (see Appendixand pre-
the hyperbolic tangent function as being representative; howsented in the insert of Fig. 1. The figure is a projection of the
ever, the main results are common to other monotonic trans3 variablesAD, 8,b; on theAD-g plane, i.e., for each value

IIIl. MONOTONIC FUNCTIONS
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FIG. 1. Analysis of a region in parameter space for the hyper- FIG. 3. Example of a region in parameter space for hyperbolic
bolic tangent transfer function ad= 2. Points that lead to chaotic tangent transfer function ardi=9 where points that lead to chaotic
trajectories are marked. The remaining space in this region leads tajectories are marked. The remaining space in this region leads to
stable attractors. The center of the circle4®4,0.178 represents  stable attractors.
the chaotic point discussed {®]. Inset: the attractor dimension
(AD) of the chaotic points shown in this region. For each value of

the parametep, the AD of all the chaotic points along theaxis the same as foN=2, i.e., the main features as described
are drawn. above are also present here.

The general cas¢<<1 can be analyzed in the same man-

of the gaingB, all the unstable points along theaxis are ner as thgt described above. \1Ne hote thatNer2 no un-
stable regions are found faf<<3.

presented. It is clear that the dimension is typically between In higher dimensionslarger N) it is necessary to use

1.0 and 1.3, more Fourier components to describe general weights; there-
The same analysis was applied to the ddse3 (which is P X gene gnts,
fore, more parameters are required—amplitudes and phases.

similar to the dynamics of the ANNNI model with compet- . . .
Do . . . -~ . As before, we restrict the dimension of parameter space to
ing interactions between third neighbors along the axial di-

. : two. Figure 3 depicts a region in parameter space for the case
rgct|on[_12]). Figure 2 presents_the result_s of the same anaIyNIQ with ¢=1 (unstable behavior is found outside this
sis, which was applied foN=2. The insert shows the

. . . . : .~ ..~ region as wejl. The unstable points cover a significant part
continuation of the figure for higher gain values |nd|cat|qg of the space. Qualitatively, the parameter space is similar to

e - that of N= 2,3 in the sense that the chaotic regions are mixed
values. The reason for taking=1 here as well, originates . .

and fragile. However, adl increases, the structure of the
from the fact that larger phases tend to generate more un-

: S X , arameter space becomes more involved as larger cycles be-
stable regions. A similar behavior was found in the case of : ; .
. . ; come available. Moreira and Salindl?] have already men-
binary output 3—0°) where the size of the cycles increases

X . . . tioned that such a complication is expected at largein
with ¢ [1]. It was found that the phase diagram is baSICa”ytheir model N=3). We sphould stress hpere that the ’gpparent

dense regions of unstable poirds notimply robust chaos
since all the characteristics discussed previously for smaller
systems are present here, namely, there is only a single posi-
4.0 r 10 | tive Lyapunov exponent; the chaotic regions are fragile, i.e.,
\ . in the vicinity of every unstable point there exists a stable
' one. In particular, these points generate a mixed behavior in
LN phase space. Stable and unstable attractors are possible, de-
= 0.1 pending on the initial conditions; hence, both have a nonva-
30| : nishing basin of attractions.
The examples provided so far consist of weights with a
- single Fourier component. Nevertheless, we do not expect
) any significant quantitative changes in the cases where the
weights consist of more Fourier components, besides the ob-
20 . vious addition of free parameters. The reason is that the
012 b 0.17 number of positive Lyapunov exponents does not increase.
For conciseness, we tested the case of two Fourier compo-
FIG. 2. A region in parameter space for hyperbolic tangentn€nts with biasp=2 in Eq. (4). A few cases with arbitrary
transfer function and\=3. Points that lead to chaotic trajectories amplitudes and phases were chosen. The results indicate that
are marked. The remaining space in this region leads to stable a@ur conclusions are applicable in the more general case.
tractors. Inset: continuation of the main figure for smaller values of  In all our simulations we found no regions with more than
b in a log-log plot. a single positive exponertfor N up to 60, including many
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FIG. 5. DifferenceA, [Eq. (8)] for three cases. The lines are an
exponential fit of the data. The solid line represents the fit for
=3 with a slope of 4.620.05. The dashed line represents
=4 with a slope of 4.660.02 and the dotted line represents
N=4 with an arbitrary weight with a slope of 4.65.02.

FIG. 4. A sequence of period doubling bifurcations for a net-
work with a sine transfer function aridi= 3. The weights consist of
a single Fourier component without phase and bias. The vertical
axis, denoted by “amp,” is the actual amplitude value of the cycle
in phase space. Inset: an enlargement of the pointed region.

cases with randomly chosen weights. Therefore, we conjedy = 3. For clarity we plot the sequence originating from one
ture that the SGen with hyperbolic tangent function typicallyPranch. ,
exhibits unstable behavior with a single positive Lyapunov Figure 5 presents the difference between the valugs of
exponent. at which successive period doubling occurs,

We conclude with the observation that the bias tdym
Eq. (4) is crucial for producing chaotic behavior in the model
with a monotonic transfer function. Another important ingre-

dient is the existence of a large enough phase, at least Whef’his figure depicts three caseli=3N=4 with weights

the weights cop;ist of a single Fourier component. !t.'s pOSE:onsisting of a single Fourier component, aNe=4 with
sible that additional Fourier components are sufficient toarbitrary weights. Although the running indexstarts from
generate unstable behavi@without large phase however, '

L . 1, the actual number of bifurcations is somewhat higher.
Iarger phase significantly increases the number of unStablélearly the difference\, is an exponential decreasing func-
points.

tion of the form

An=PBni1= Bn- 8

IV. NONMONOTONIC FUNCTIONS Ap~8" 9)

Applying a honmonotonic transfer function dramatically
alters the structure of parameter space with respect to mondhe constants was evaluated from the slope for the three
tonic functions. One is able to obsema@bust chaosand the cases and found to be in good agreement with Feigenbaum’s
possible number of positive exponents is no longer boundedniversal constant~4.669)[13].
by one. In the following analysis we treat the class of odd The analytical analysis of the parameter space concen-
nonmonotonic functions and use the “sine™ as a represenirates on obtaining the spine loci of a given map. The spine
tative function. locus is associated with the parameter vectors which lead to

As mentioned in Sec. I, quasiperiodic stationary solu-a superstable attract¢e.g., in one dimension, the first order
tions were found analytically for odd functions, which are derivatives of the map vanish at the super-stable attractor
valid below some critical value of the gain parameter. In thisBarretoet al. [14] have conjectured that the structure of the
section we focus on the region beyond that value. Note thgtarameter space is determined primarily by the location and
in contrast to monotonic functions, unstable dynamics can bdimension of the spine loci. A window is constructed around
obtained with phase and bias equal to zero. Indeed, in ththe spine locus, which leads to a stable attractor. Generally
sequel we usep=0 and only two-dimensional parameter speaking, the window is called “limited” if the spine locus
spaceB-b as in the previous section. is an isolated point in parameter space, whereas it is called

Before we turn to the analysis of the parameter space, létextended” if the spine is of higher dimension.
us demonstrate a manifestation of a chaotic behavior for con- We turn now to a more systematic investigation of the
crete parameter values in small networKs=3,4 via the parameter space, starting with the simplest casé\sf2.
mechanism of period doubling. The dynamic system is deSince the number of free parameters is equal to the size of
scribed by Eq(2) where the output value is given by Ed)  the system, the number of positive exponents is at most the
with f=sine transfer function. Figure 4 presents a sequencaeumber of parameters; therefore, one should not expect a
of bifurcations of the output value&@enoted by “ampli- robust chaos(unless fixing one of the parametersThe
tude”) on a limit cycle as a function of the gaig for  weights for a single Fourier component with=1 and ¢
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=0 are given by Eq(6). In principle we could takep+ 0,
which may drive a fraction of the periodic orbits to quasi-
periodic ones.

Similarly to Eqg.(7), the map can be written as follows: 195

S*tl=sin{B[(~1+b)S+(1+b)S 1} (10

with the following fixed point(FP), «

1.85
S =sin(28bS"). (11)

The stability of the FP can be analyzed from its correspond-
ing Jacobian matrix

_[B(-L+bicos2bs) ﬁ(1+b)cos<2,8b8*>) %00 o 00
- 1 0 ' b

(12 FIG. 6. Analysis of a region in parameter space for a network

In order to identify the spine locus, the following condi- with a sine transfer function and=2 where points that lead to
tions must be satisfied: dst=tr M =,O (N =A,=0). It chaotic trajectories are marked. The dégkay) colors correspond
turns out that both constraints on the eigenvalues give rise tkE_arean with onétwo) positive exponent. The remaining space in
the same condition, cosg®S)=0. Therefore, we can say tl is region leads to stabl_e attractors. The bold dashed line is the
that the constraints are degenerate. Combining this conditior”'"® locus of the FP defined by B4.3), n=0.

with Eq. (11) we obtainS* and the relation .
of the FP and the two cycle from higher-order cycles, we

aT analyze the window when the initial condition is fixed to
pob=,(2n+1), n=01,... (13) s =1. Figure 7 depicts a region of parameter space for which
this analysis was applied. In this case, the basic nature of
This equation holds fob>0. Forb<0 there are no FP so- these spines is revealed and a clear extended window is con-
lutions that satisfy the constraint. The main spinelfer0 is  Structed around the solid curyEP, Eq.(13)] as well as the
related to a two-cycle solution, which can be obtained nuSolid curve with circlegtwo-cycle, Eq.(14)). _
merically. Other FP's, which do not meet the constraint, are Analysis of the cas&=3 is similar toN=2. The spine
possible and belong to a different curve in parameter spacéocus for the FP is given by
In a similar way, the constraints of the two-cyclg!{?
=S spine locus gives the following relation betwegrand (2n+1)7

b: T, >0, n=0,1,.... (15)

si{B[(—1+b)+(1+b)C]}=C,

_(4n+1)m—2B(1+b)

23(—1+D) , n=0,x1,.... (19 28 |

Turning to numerical analysis, Fig. 6 depicts a region of 26 |
parameter space where areas that lead to chaos are marked. o4
This region was sampled exhaustively in a resolution of '
~10 ° in each direction. Several random initial conditions 5o
were used for each parameter value to avoid isolated cycles. '
The dark area corresponds to a region with one positive ex- 20
ponent while the gray area corresponds to a region with two
positive exponents. The dashed line is the calculated spine 18
locus of the FP defined by E@13) for the first branchn
=0. Let us discuss briefly the structure of the parameter 1.6 ‘
space. The dark regidfteft-hand side of the figujecontains 015 025 035 045 055 065

extended(stable windows (embedded white arepsssoci- b

ated with cycles of different length. The common feature of £ 7. Analysis of a region in parameter space around the main
these windows is the fact that they are surrounded by Ungpine |oci for a sine transfer function ané=2. The initial condi-
stable regions with one positive exponent. As we move to th@on in phase space is fixed &= 1. The dark(gray) color corre-
right-hand side of the figure, a region with two positive €x-sponds to areas with on@wo) positive exponent. The remaining

ppnents emerges. The spine locus depicted enters this _re_gi@fiace in this region leads to stable attractors. The solid line is the
since, as mentioned above, we started from several initiagdpine locus of the FP defined by E@.3), and the solid line with

conditions; therefore, the dynamics is typically attracted tacircles is the calculated spine locus of the two-cycle attractor de-
unstable cycles of higher order. In order to isolate the spinéined by Eq.(14).
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We can generalize the equation for the spine locus of the FP 20.0
for any N,
2n+1)
ﬁbN=%, b>0, n=0,1,... (16) 180 r

The constraint for the two-cycle is obtained from similar [=
conditions formulated foN=2. The relation betweeg and <
b is the following:

sin{ B[ (1/2+2b)+(—1/2+b)C]}=C, 5.0

(4n+ 1) 7+ B(1—2b)
= =0,=1,.... (1
B(1+4b) o =01, @7 00,5 15 20 25

The caseN=3 reveals another aspect in the structure of
parameter space. There are regions for which we find three F|G. 8. AD as a function of the gain for a sine transfer function
positive Lyapunov exponents. In such regions, we observe@ghereN=17, b=0, and¢=0. The solid curve is the AD and the
a robust chaos, namely, small changes of the parametegiashed line below represents the number of positive exponents.
would not destroy the chaotic behavior.

In principle we can construct the conditions of the spine
locus for larger cycles and larger systems; however, the taskents, which grows with3. Each point was averaged over
becomes much more involved as the cycle length increasegsen random initial conditions in order to check whether the

Let us now extend our analysis for large systems. Twasame attractor is sampled. Indeed, the errors are less than 1%
guestions come to the foré@) Can we find regions for which and typically much less; therefore, they are not presented.
the chaotic dynamics is robust, and how frequent are they@Mote that there are cases, not shown, for which the tine
(i) Is there a simple relation between the attractor dimensior= const crosses a window. In such regions, the attractor di-
and the control parameters; or, in other words, can we conmension decreases and then continues to grow once the win-
trol the attractor dimension? We saw previously that even inlow is passedl.As the sum of the exponents becomes posi-
the caseN=3, a robust chaos is observed. However, thistive, the attractor dimension saturates the dimension of the
type of dynamics is of little interest since the volume in systemN.
phase space is expandir@-,N:l)\i>O; hence, the bounded Finally we validated these results using a different
space is filled. The more interesting case is a motion that immethod. We tested several points in parameter space by es-
confined to an attractor, yet the number of positive exponentimating the attractor dimension from the time series gener-
is larger than the number of free parameters. We claim theated by a network and compare it to the estimation using Eq.
the possibility to find regions with an increasing number of(Al). The time series was recorded from a system with the
positive exponents, grows with. This means that we have a same parameters and the attractor dimension was calculated
natural parameter in the model that controls the degree of thigom the reconstructed phase space using the method of cor-
chaos. In addition, this parameter controls the dimension ofelation integra[15]. The results confirm our hypothesis for
the attractor. the monotonic relation between the number of positive ex-

In order to test this hypothesis we used a larger systermrponents angs.

N=17. To convince the reader that our analysis is not re-

stricted to the simple case of a single Fourier component, we V. COMBINATION OF MONOTONIC AND

used more complicated weights consisting of two Fourier NONMONOTONIC FUNCTIONS

components with irrational phases and a bias term. The am-

plitudes and phases of the components were kept fixed; In this section we discuss the mixed case where the trans-
therefore, we have the same two-dimensional parametdfr function can be written in the following way:

space as before. The exact details of the amplitudes and

phases are of no importance. FX) =T m(X) + €fam(X), (18)

A close inspection of the parameter space reveals the fol- . .
lowing regimes: first, the incommensurate regime, whichVNer€fm(m represents a monotoni@onmonotonig func-
corresponds to the irrational phases of the weights. Abovl©n @nde is a mixing parametefnot necessarily smallFor
some value of the gain parametelepending on the details Concreteness, assume  thdg(x)=tanh§) and f,n(x)
of the weights, most of the space is associated with chaotic=Sin(x). Letx=AW- S and the weights are given by E@)
dynamics. The number of positive exponents in this regimdtaking ¢=0 for simplicity). Following the same develop-
grows asB increases until the sum of the exponents becomegients shown i{2,4], we develop an asymptotic periodic
positive. In this regime, we observed a relatively monotonicsolution of the form
growth in the attractor dimension, calculated using &d.)
(se_e App_endl)( Figure 8 depicts the attractor dimension for_ S|=tan}‘{Acos<2—7Tkl+ Bl eSihACOS(Z—TrkH— B
a fixed bias value. Clearly, the dimension grows monotoni- N N

cally. The figure also shows the number of positive expo- (29
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whereA=A(B), B=B(B). The coefficientA,B can be ob- path of the vector of parameters intersects the boundary of a
tained from the self-consistent equations: spine locus, the attractor dimension increases monotonically
with B until it saturates the dimension of the system. From
this point, one can no longer define the dynamics as an at-
tractor since a volume of phase space expands.

Based on these results we can formulate the following
conclusion: A “perceptron SGen” with nonmonotonic trans-
fer function can generate a chaotic attractor much more eas-
ily than with a monotonic function. In addition, when the
where D(p):22p(22p_1)sz+26p(_1)p+l and B,, are chaos is robust, one can expect the learning process to be

A=%,8NaE1 D(p)(A2)% Y(p!)"2, B=0,

B=5Nb21D(p)BZP*1[<2p>!]*1, A=0, (20

the Bernoulli numbers. easier since the extended parameter space, which includes
As described if4], when the gain value increases, thethe attractor dimension, is smooth in these regions.
system undergoes a transition from the trivial soluti€n, We further showed that the results can be extended to

=0, to a state which is governed by one of the two possibléranSfer functions, which are combinations of monotonic and
attriclctors: a fixed pointX=0,B+0) or a periodic solution nonmonotonic functions. The asymptotic stable attractor is

depending on the relation betweesy,,B., (the critical developed §imilarly to the pure case of monotonip/
value for the onset of each attradtoAt higher gain values nonmonotonic functions. The structure of the unstable region

(B> Be1,Bzy) both attractors are stable and the system willls governed by the function .that Ioses'its st_ability in that
flow to one of them, depending on the initial condition, r€9ion- There are three possible scenarios: either one of the
When the gain parameter is further increased, one observ&¥© yPes of functions loses its stability while the other re-
unstable dynamics of the type described in this paper ThAains stable or both functions lose their stability. The first
mixing parametek controls the actual point from which the twqrﬁases are aCtu?IH coverled thrﬁughout trf1e p?PIer'
parameter space is governed by the nonmonotonic function. K € Iathlt\elnsm.n ofthe results to the case of multilayer r;]et-
Finally, we note that it is easy to generalize this solution'Vor s ( ) raises new interesting questions, e.g., to what

for ¢#0 and weights which contain more Fourier Compo_extent our findings remain valid; how does the combined
nents(Eq. (4) following [2,4]) perceptron SGens affect each other, namely, do they act to

stabilize the dynamics or does a chaotic unit maintain its
behavior, thus reflecting its robust nature. Another issue of
VI. DISCUSSION major importance is the attractor dimension of the MLN.

In this paper we analyzed a class of neural networks in thd/Nile @ “perceptron SGen” can typically generate a 1D

context of time series generation and focused on the effect dittractor in the sftablfe regime, wi_saw that l:lpplylng a non-
the transfer function on long-term behavior. We suggested yonﬁt%mch transder unction to this netv(\j/_or can gecr)lerart]e
natural way to classify transfer functions into monotonic andMUch higher and continuous attractor dimension. On the

nonmonotonic functions. The class of monotonic functions2ther hand, a “MLN SGen™ can generate highgntege)
ractor dimension in the stable reginigee[2,4,6)). Do

can generate chaotic dynamics; however, the weights shouf t . : ) . .
contain a nontrivial bias term and a phase. The chaos can kia LN SGens” generate continuous high-dimensional at-
regarded as fragile, i.e., in regions where unstable behavidFactors as well?
can be observed, the parameter space is characterized by
points around which the parameter vectors lead to a stable ACKNOWLEDGMENTS
dynamics(limited windows. As the size of the network in- __We thank W. Kinzel and Y. Ashkenazy for fruitful dis-
creases, the structure of parameter space becomes more isqions | K. acknowledges the support of the Israel Acad-
volved due to the appearance of longer cycles. On the Otheermy of Sciences.
hand, the class of nonmonotonic functions is capable of gen-
erating robust high-dimensiondkthaotig attractors. This
means that there exist regions of parameter space for which
slight changes in the vector of accessible parameters will not In order to characterize the parameter space numerically,
stabilize the system. Although the analysis presented in there apply a rather straightforward method. For a dense mesh
paper was exemplified by an odd nonmonotonic function, thef points in the 8-b plane, we calculate the spectrum of
results we obtain, which are mainly related to the regime oLyapunov exponents associated with the dynamics, from
B values where unstable behavior emerges, include evewhich we can obtain the stability of the attractor and its
functions as wel[16]. attractor dimension. This procedure is applied after the tran-
One must refer to another papgt7] that focuses on sient and for several randomly chosen initial conditions. The
searching robust chaos in recurrent neural networks usingpectrum is estimated using an algorithm suggested by Wolf
weight space exploration. Their motivation and methods dif-et al. [18]. Basically, the algorithm evolves an orthonormal
fered from ours. However, their main result, which states thabasis by multiplying each vector with the Jacobian matrix,
robust chaos can be achieved using a nonmonotonic transfetich is evaluated along the trajectory. To overcome the
function only, is in agreement with our conclusions. problem of exponential decreasing of the vectors associated
Another aspect characterizing nonmonotonic functions isvith smaller eigenvalues, the principal vectors are reor-
the potential to monotonically increase the attractor dimenthonormalized frequently. This procedure ensures that our
sion over a broad range of parameters. This interesting effeetnalysis does not run into roundoff errors. This algorithm
is achieved by increasing the gain parameierUnless the measures the average exponential change of a volume along
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the trajectory in state space, using the rate of change in thehere n is defined by the condition= ;\;>0 and
principal vectors. zifjll)\i<o_

The attractor dimension_is estimated gsing thg Kaplan- \we are aware of a problem associated with the Kaplan-
Yorke conjecturg11] that gives the following relation be- yorke conjecture. In cases where the spectrum has some
tween the(sorted spectrum of Lyapunov exponents (\1  yery small exponents, it is possible to obtain a biased esti-

;grﬁs.ibﬁ) and theattractor dimensiorty, (information di-  ation of the dimension since the sum described in(&d)

n may fluctuate around zero due to one of the exponents. In
21 A such cases, we take additional precaution to avoid this prob-
dyy=n+ —, (A1) lem.
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