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Long-term properties of time series generated by a perceptron with various transfer functions

Avner Priel and Ido Kanter
Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel

~Received 4 November 1998!

We study the effect of various transfer functions on the properties of a time series generated by a
continuous-valued feed-forward network in which the next input vector is determined from past output values.
The parameter space for monotonic and nonmonotonic transfer functions is analyzed in the unstable regions
with the following main finding: nonmonotonic functions can produce robust chaos whereas monotonic func-
tions generate fragile chaos only. In the case of nonmonotonic functions, the number of positive Lyapunov
exponents increases as a function of one of the free parameters in the model; hence, high dimensional chaotic
attractors can be generated. We extend the analysis to a combination of monotonic and nonmonotonic func-
tions. @S1063-651X~99!02303-X#

PACS number~s!: 84.35.1i, 07.05.Mh, 05.45.2a
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I. INTRODUCTION

One of the developing subjects in the research of ne
networks is the analysis of time series. There are sev
approaches in this field such as prediction, characteriza
modeling, etc. In this paper, we focus on understanding
interplay between the type of transfer function used a
some quantitative measures of the time series generate
particular we are interested in the classification of the p
sible types of sequences generated by the network and
characteristics according to the nature of the attractor of
dynamics. Previous analytical studies concentrated on
stable regime of the parameter space of feed-forward
works with a feedback loop that generate time series@1–6#.
One of the main questions we address in this paper reg
the behavior of the system in theunstableregime and how
varying the transfer function affects the asymptotic behav
of the sequence generated by the model.

In order to characterize the dynamical system we ana
its properties while varying some control parameters. Ana
sis of the parameter space of a map enables us to classif
type of flow in phase space in the vicinity of a given vec
of parameters. An interesting question that arises is whe
it is possible to generate high dimensional attractors and c
trol their properties, e.g., the attractor dimension~a global
property of the phase space! and the robustness~a local prop-
erty of the parameter space!.

As we shall see, there exists a clear distinction betw
monotonic and nonmonotonic transfer functions, e.g.,
terms of the structure of parameter space and attracto
mension. We shall try to illuminate this phenomenon as w
as its relation to the possibility of generating robust cha
The concept of robust chaos~see@7#! is associated with an
attractor for which the number of positive Lyapunov exp
nents~in a region of parameter space! is larger than the num
ber of free~accessible! parameters in the model. Moreove
in the vicinity of a chaotic parameter’s vector, no period
attractors are found. We give strong indications to supp
our conjecture, which states that monotonic functions are
capable of generating robust chaos while nonmonoto
functions are.

The analysis presented in this paper is performed mo
PRE 591063-651X/99/59~3!/3368~8!/$15.00
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for a perceptron with weights composed of a single Fou
component with an additional bias term, except where oth
wise mentioned. There are two main reasons behind
choice. First, this choice leads to a two-dimensional para
eter space (b,b), gain and bias, respectively, which can b
conveniently visualized, whereas larger parameter spac
more difficult to handle. Second, all the important charact
istics are already manifested in this case. The existence
bias in the weights is important for producing unstable d
namics in the case of monotonic functions; therefore, it
crucial to include this parameter.

The paper is organized as follows. In Sec. II, the mode
described and some of the relevant results previously
tained are reviewed. In Sec. III the class of monotonic fu
tions, such as the hyperbolic-tangent function, is analyz
The cases of two and three input units,N52,3, are examined
and compared to previous findings. We analyze the par
eter space using numerical methods, e.g., calcula
Lyapunov spectrum, attractor dimension~see Appendix!, to
identify stable and chaotic regions. The main conclusion
that the model with monotonic functions is indeed rath
stable in the sense that even in regimes where chaotic be
ior can be found, the chaos is fragile and small variations
the parameters drive the system to stable dynamics. In
IV nonmonotonic functions are examined both analytica
and numerically. The issue of high dimensional attractors
treated as well as the structure of parameter space and
possibility of generating robust chaos. Finally, in Sec. V w
discuss the case of a transfer function, which is a comb
tion of monotonic and nonmonotonic functions. The Appe
dix contains the technical details concerning our analysis
the parameter space, which one should refer to while read
Secs. III and IV.

II. THE MODEL

Let us consider a perceptron withN input units and
weights WW . For a given input vector at time stept,
SW t (Sj

t , j 51, . . . ,N), the network’s outputSout
t is given by

Sout
t 5 f S b(

j 51

N

WjSj
t D , ~1!
3368 ©1999 The American Physical Society
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PRE 59 3369LONG-TERM PROPERTIES OF TIME SERIES . . .
whereb is a gain parameter andf is a transfer function. The
input vector at timet11 is defined by the previous outpu
values in the following dynamic rule:

S1
t115Sout

t , Sj
t115Sj 21

t , j 52, . . . ,N. ~2!

Since the network generates an infinite sequence from
initial state, this model was denoted in previous papers a
Sequence-Generator~SGen!, e.g.,@2#. We restrict the discus
sion to bounded, symmetric nonlinear transfer functions,

f :R→R, u f ~x!u,`, ;xPR. ~3!

A prescription for the weights is given by the followin
form:

Wj5(
p

ap cosS 2p

N
kpj 1pfpD1b, j 51, . . . ,N,

fpP@21 . . . 1#, ~4!

where $ap% are constant amplitudes,$kp% are positive inte-
gers denoting the wave numbers,b is the bias term, andp
runs over the number of Fourier components composing
weights. In the following we investigate only the cas
wherep51 or 2 in order to keep the dimension of the p
rameter space as small as possible.

Our main concern is the differences imposed by the tra
fer function on the asymptotic behavior of the time ser
generated by the model. We concentrate on two classe
functions, monotonic and nonmonotonic, which are exem
fied in detail by hyperbolic tangent and sine functions,
spectively. This model was analyzed in various cases, a
them in the stable regime, for moderate values of the g
parameterb. The other extreme,b→` was also treated~see
@1,5#!. We concentrate on the intermediate regime for wh
unstable behavior emerges.

Let us review the relevant results previously obtained.
the case of a ‘‘perceptron SGen’’ with general weights a
an odd transfer function, the system undergoes a Hopf bi
cation at some critical value of the gain parameter. The
tionary solution above the bifurcation value is characteriz
by a quasiperiodic attractor flow governed by one of
Fourier components of the power spectrum of the weig
hence, the attractor dimension is typically one. This type
flow becomes unstable at higher gain value, this being
focus of this paper. We should point out here that there
cases for which a stable two-dimensional~2D! attractor is
observed@5#; nevertheless, their measure is zero. The res
were extended to multilayer networks in@2,6# where the at-
tractor dimension, in the stable regime, is found to
bounded in the generic case by the number of hidden u
independent of the complexity of the weight vectors.

III. MONOTONIC FUNCTIONS

In this section we discuss the case of monotonic tran
functions. This family of functions is typical to neural ne
works for several reasons, one of which is their biologi
plausibility ~see, e.g.,@8#!. For the rest of this section we us
the hyperbolic tangent function as being representative; h
ever, the main results are common to other monotonic tra
an
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fer functions. The outputSout for this case is given by

Sout
t 5tanhS b(

j 51

N

WjSj
t D . ~5!

The weights consist of a single biased Fourier componen
follows:

Wj5a cosS 2p

N
k j1pf D1b, j 51, . . . ,N, fP[ 21,1].

~6!

In the following we seta51 to reduce the dimensionality o
the parameter space. For the simplest case of two inputN
52, the equation that describes this map is simply

St115tanh@b~W1St1W2St21!#,

whereWi i 51,2 are given by Eq.~6!. The special casef
51 reduces to

St115tanh$b@St~11b!1St21~211b!#%, ~7!

which is equivalent to a physical model of a magnetic s
tem, axial next-nearest-neighbor Ising~ANNNI ! model
@9,10#, that was intensively investigated in the past. This m
is capable of generating stable attractors~nontrivial fixed
points, periodic and quasiperiodic orbits! as well as unstable
chaotic behavior. The commensurate phase of the ma
presented in@9# and, therefore, will be omitted here.

The goal of the analysis of the parameter space is to c
sify the dynamics in a region of parameter space. The a
lytical part is unfortunately absent here due to the limitatio
set by the transfer function. It transpires that the class
monotonic functions does not give rise to critical points sin
the first-order derivatives of the map are always positi
therefore, the determinant is bounded away from zero.
large periodic orbits, however, it can come very close
zero; therefore, the structure can be somewhat more sim
to maps that do contain critical points~see discussion in Sec
IV !. Therefore, let us turn to a numerical analysis. In orde
answer questions such as the existence of a robust chao
parameter space is sampled in a high resolution, up to 125

in each direction. Figure 1 depicts a section of the param
space for the casef51. The black area leads to chaot
behavior with one positive Lyapunov exponent. This area
not a compactly dense unstable region. In fact each unst
point has stable neighbors, which lead to periodic attract
The remaining space in this region gives rise to stable att
tors. The center of the bold circle represents the point m
tioned in @9#, which leads to chaotic behavior with the p
rameter value@b54.241 55,b50.178 81#. A perusal of the
figure shows that the unstable region is constructed arou
1D curve. For other choices of the phasef the parameters o
this curve change, not its nature. Moreover, we note that
unstable points lead to a mixed behavior, i.e., both stable
unstable behavior can be obtained from the same vecto
parameters, depending on initial conditions. The dimens
of the chaotic attractors in this region was calculated us
the Kaplan-Yorke conjecture@11# ~see Appendix! and pre-
sented in the insert of Fig. 1. The figure is a projection of
3 variables,AD,b,b; on theAD-b plane, i.e., for each value
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3370 PRE 59AVNER PRIEL AND IDO KANTER
of the gainb, all the unstable points along theb axis are
presented. It is clear that the dimension is typically betwe
1.0 and 1.3.

The same analysis was applied to the caseN53 ~which is
similar to the dynamics of the ANNNI model with compe
ing interactions between third neighbors along the axial
rection@12#!. Figure 2 presents the results of the same an
sis, which was applied forN52. The insert shows the
continuation of the figure for higher gain values indicati
that the unstable behavior can be found for any small b
values. The reason for takingf51 here as well, originates
from the fact that larger phases tend to generate more
stable regions. A similar behavior was found in the case o
binary output (b→`) where the size of the cycles increas
with f @1#. It was found that the phase diagram is basica

FIG. 1. Analysis of a region in parameter space for the hyp
bolic tangent transfer function andN52. Points that lead to chaoti
trajectories are marked. The remaining space in this region lead
stable attractors. The center of the circle at~4.24,0.178! represents
the chaotic point discussed in@9#. Inset: the attractor dimensio
~AD! of the chaotic points shown in this region. For each value
the parameterb, the AD of all the chaotic points along theb axis
are drawn.

FIG. 2. A region in parameter space for hyperbolic tang
transfer function andN53. Points that lead to chaotic trajectorie
are marked. The remaining space in this region leads to stabl
tractors. Inset: continuation of the main figure for smaller values
b in a log-log plot.
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the same as forN52, i.e., the main features as describ
above are also present here.

The general casef,1 can be analyzed in the same ma
ner as that described above. We note that forN52 no un-
stable regions are found forf, 1

2 .
In higher dimensions~larger N) it is necessary to use

more Fourier components to describe general weights; th
fore, more parameters are required—amplitudes and pha
As before, we restrict the dimension of parameter space
two. Figure 3 depicts a region in parameter space for the c
N59 with f51 ~unstable behavior is found outside th
region as well!. The unstable points cover a significant pa
of the space. Qualitatively, the parameter space is simila
that ofN52,3 in the sense that the chaotic regions are mix
and fragile. However, asN increases, the structure of th
parameter space becomes more involved as larger cycle
come available. Moreira and Salinas@12# have already men-
tioned that such a complication is expected at largerb in
their model (N53). We should stress here that the appar
dense regions of unstable pointsdo not imply robust chaos
since all the characteristics discussed previously for sma
systems are present here, namely, there is only a single p
tive Lyapunov exponent; the chaotic regions are fragile, i
in the vicinity of every unstable point there exists a sta
one. In particular, these points generate a mixed behavio
phase space. Stable and unstable attractors are possibl
pending on the initial conditions; hence, both have a non
nishing basin of attractions.

The examples provided so far consist of weights with
single Fourier component. Nevertheless, we do not exp
any significant quantitative changes in the cases where
weights consist of more Fourier components, besides the
vious addition of free parameters. The reason is that
number of positive Lyapunov exponents does not increa
For conciseness, we tested the case of two Fourier com
nents with bias,p52 in Eq. ~4!. A few cases with arbitrary
amplitudes and phases were chosen. The results indicate
our conclusions are applicable in the more general case

In all our simulations we found no regions with more th
a single positive exponent~for N up to 60!, including many

r-

to

f

t

at-
f

FIG. 3. Example of a region in parameter space for hyperb
tangent transfer function andN59 where points that lead to chaoti
trajectories are marked. The remaining space in this region lead
stable attractors.
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PRE 59 3371LONG-TERM PROPERTIES OF TIME SERIES . . .
cases with randomly chosen weights. Therefore, we con
ture that the SGen with hyperbolic tangent function typica
exhibits unstable behavior with a single positive Lyapun
exponent.

We conclude with the observation that the bias termb,
Eq. ~4! is crucial for producing chaotic behavior in the mod
with a monotonic transfer function. Another important ingr
dient is the existence of a large enough phase, at least w
the weights consist of a single Fourier component. It is p
sible that additional Fourier components are sufficient
generate unstable behavior~without large phase!; however,
larger phase significantly increases the number of unst
points.

IV. NONMONOTONIC FUNCTIONS

Applying a nonmonotonic transfer function dramatica
alters the structure of parameter space with respect to m
tonic functions. One is able to observerobust chaos, and the
possible number of positive exponents is no longer boun
by one. In the following analysis we treat the class of o
nonmonotonic functions and use the ‘‘sine’’’ as a repres
tative function.

As mentioned in Sec. II, quasiperiodic stationary so
tions were found analytically for odd functions, which a
valid below some critical value of the gain parameter. In t
section we focus on the region beyond that value. Note
in contrast to monotonic functions, unstable dynamics can
obtained with phase and bias equal to zero. Indeed, in
sequel we usef50 and only two-dimensional paramet
spaceb-b as in the previous section.

Before we turn to the analysis of the parameter space
us demonstrate a manifestation of a chaotic behavior for c
crete parameter values in small networksN53,4 via the
mechanism of period doubling. The dynamic system is
scribed by Eq.~2! where the output value is given by Eq.~1!
with f 5sine transfer function. Figure 4 presents a seque
of bifurcations of the output values~denoted by ‘‘ampli-
tude’’! on a limit cycle as a function of the gainb for

FIG. 4. A sequence of period doubling bifurcations for a n
work with a sine transfer function andN53. The weights consist o
a single Fourier component without phase and bias. The ver
axis, denoted by ‘‘amp,’’ is the actual amplitude value of the cy
in phase space. Inset: an enlargement of the pointed region.
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N53. For clarity we plot the sequence originating from o
branch.

Figure 5 presents the difference between the values ob
at which successive period doubling occurs,

Dn5bn112bn . ~8!

This figure depicts three cases:N53,N54 with weights
consisting of a single Fourier component, andN54 with
arbitrary weights. Although the running indexn starts from
1, the actual number of bifurcations is somewhat high
Clearly the differenceDn is an exponential decreasing fun
tion of the form

Dn;d2n. ~9!

The constantd was evaluated from the slope for the thr
cases and found to be in good agreement with Feigenbau
universal constant (;4.669) @13#.

The analytical analysis of the parameter space conc
trates on obtaining the spine loci of a given map. The sp
locus is associated with the parameter vectors which lea
a superstable attractor~e.g., in one dimension, the first orde
derivatives of the map vanish at the super-stable attrac!.
Barretoet al. @14# have conjectured that the structure of t
parameter space is determined primarily by the location
dimension of the spine loci. A window is constructed arou
the spine locus, which leads to a stable attractor. Gener
speaking, the window is called ‘‘limited’’ if the spine locu
is an isolated point in parameter space, whereas it is ca
‘‘extended’’ if the spine is of higher dimension.

We turn now to a more systematic investigation of t
parameter space, starting with the simplest case ofN52.
Since the number of free parameters is equal to the siz
the system, the number of positive exponents is at most
number of parameters; therefore, one should not expe
robust chaos~unless fixing one of the parameters!. The
weights for a single Fourier component witha51 and f

-

al

FIG. 5. DifferenceDn @Eq. ~8!# for three cases. The lines are a
exponential fit of the data. The solid line represents the fit
N53 with a slope of 4.6960.05. The dashed line represen
N54 with a slope of 4.6660.02 and the dotted line represen
N54 with an arbitrary weight with a slope of 4.6560.02.
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50 are given by Eq.~6!. In principle we could takefÞ0,
which may drive a fraction of the periodic orbits to qua
periodic ones.

Similarly to Eq.~7!, the map can be written as follows:

St115sin$b@~211b!St1~11b!St21#% ~10!

with the following fixed point~FP!,

S!5sin~2bbS!!. ~11!

The stability of the FP can be analyzed from its correspo
ing Jacobian matrix

M5S b~211b!cos~2bbS!! b~11b!cos~2bbS!!

1 0 D .

~12!

In order to identify the spine locus, the following cond
tions must be satisfied: detM5tr M50 (l15l250). It
turns out that both constraints on the eigenvalues give ris
the same condition, cos(2bbS!)50. Therefore, we can sa
that the constraints are degenerate. Combining this cond
with Eq. ~11! we obtainS! and the relation

bb5
p

4
~2n11!, n50,1, . . . ~13!

This equation holds forb.0. For b,0 there are no FP so
lutions that satisfy the constraint. The main spine forb,0 is
related to a two-cycle solution, which can be obtained
merically. Other FP’s, which do not meet the constraint,
possible and belong to a different curve in parameter sp

In a similar way, the constraints of the two-cycle (St12

5St) spine locus gives the following relation betweenb and
b:

sin$b@~211b!1~11b!C#%5C,

C5
~4n11!p22b~11b!

2b~211b!
, n50,61, . . . . ~14!

Turning to numerical analysis, Fig. 6 depicts a region
parameter space where areas that lead to chaos are ma
This region was sampled exhaustively in a resolution
'1025 in each direction. Several random initial conditio
were used for each parameter value to avoid isolated cyc
The dark area corresponds to a region with one positive
ponent while the gray area corresponds to a region with
positive exponents. The dashed line is the calculated s
locus of the FP defined by Eq.~13! for the first branchn
50. Let us discuss briefly the structure of the parame
space. The dark region~left-hand side of the figure! contains
extended~stable! windows ~embedded white areas! associ-
ated with cycles of different length. The common feature
these windows is the fact that they are surrounded by
stable regions with one positive exponent. As we move to
right-hand side of the figure, a region with two positive e
ponents emerges. The spine locus depicted enters this re
since, as mentioned above, we started from several in
conditions; therefore, the dynamics is typically attracted
unstable cycles of higher order. In order to isolate the sp
-
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of the FP and the two cycle from higher-order cycles,
analyze the window when the initial condition is fixed
Si51. Figure 7 depicts a region of parameter space for wh
this analysis was applied. In this case, the basic nature
these spines is revealed and a clear extended window is
structed around the solid curve@FP, Eq.~13!# as well as the
solid curve with circles@two-cycle, Eq.~14!#.

Analysis of the caseN53 is similar toN52. The spine
locus for the FP is given by

bb5
~2n11!p

6
, b.0, n50,1, . . . . ~15!

FIG. 6. Analysis of a region in parameter space for a netw
with a sine transfer function andN52 where points that lead to
chaotic trajectories are marked. The dark~gray! colors correspond
to areas with one~two! positive exponent. The remaining space
this region leads to stable attractors. The bold dashed line is
spine locus of the FP defined by Eq.~13!, n50.

FIG. 7. Analysis of a region in parameter space around the m
spine loci for a sine transfer function andN52. The initial condi-
tion in phase space is fixed toSi51. The dark~gray! color corre-
sponds to areas with one~two! positive exponent. The remainin
space in this region leads to stable attractors. The solid line is
spine locus of the FP defined by Eq.~13!, and the solid line with
circles is the calculated spine locus of the two-cycle attractor
fined by Eq.~14!.



F

ar

o
r
ve
te

ine
ta
se
w

e
io
o
i

hi
in
d
t
n

th
o
a
f t

em
re
w

rie
am
e
et
a

fo
ic
ov
s
ti
m
e

ni

or
n
o

r
he
n 1%
ted.
e
di-

win-
si-
the

nt
es-

er-
Eq.
the
lated
cor-
r

ex-

ns-

-
c

on

s.
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We can generalize the equation for the spine locus of the
for any N,

bbN5
~2n11!p

2
, b.0, n50,1, . . . ~16!

The constraint for the two-cycle is obtained from simil
conditions formulated forN52. The relation betweenb and
b is the following:

sin$b@~1/212b!1~21/21b!C#%5C,

C5
~4n11!p1b~122b!

b~114b!
, n50,61, . . . . ~17!

The caseN53 reveals another aspect in the structure
parameter space. There are regions for which we find th
positive Lyapunov exponents. In such regions, we obser
a robust chaos, namely, small changes of the parame
would not destroy the chaotic behavior.

In principle we can construct the conditions of the sp
locus for larger cycles and larger systems; however, the
becomes much more involved as the cycle length increa

Let us now extend our analysis for large systems. T
questions come to the fore:~i! Can we find regions for which
the chaotic dynamics is robust, and how frequent are th
~ii ! Is there a simple relation between the attractor dimens
and the control parameters; or, in other words, can we c
trol the attractor dimension? We saw previously that even
the caseN53, a robust chaos is observed. However, t
type of dynamics is of little interest since the volume
phase space is expanding,( i 51

N l i.0; hence, the bounde
space is filled. The more interesting case is a motion tha
confined to an attractor, yet the number of positive expone
is larger than the number of free parameters. We claim
the possibility to find regions with an increasing number
positive exponents, grows withb. This means that we have
natural parameter in the model that controls the degree o
chaos. In addition, this parameter controls the dimension
the attractor.

In order to test this hypothesis we used a larger syst
N517. To convince the reader that our analysis is not
stricted to the simple case of a single Fourier component,
used more complicated weights consisting of two Fou
components with irrational phases and a bias term. The
plitudes and phases of the components were kept fix
therefore, we have the same two-dimensional param
space as before. The exact details of the amplitudes
phases are of no importance.

A close inspection of the parameter space reveals the
lowing regimes: first, the incommensurate regime, wh
corresponds to the irrational phases of the weights. Ab
some value of the gain parameter~depending on the detail
of the weights!, most of the space is associated with chao
dynamics. The number of positive exponents in this regi
grows asb increases until the sum of the exponents becom
positive. In this regime, we observed a relatively monoto
growth in the attractor dimension, calculated using Eq.~A1!
~see Appendix!. Figure 8 depicts the attractor dimension f
a fixed bias value. Clearly, the dimension grows monoto
cally. The figure also shows the number of positive exp
P
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nents, which grows withb. Each point was averaged ove
ten random initial conditions in order to check whether t
same attractor is sampled. Indeed, the errors are less tha
and typically much less; therefore, they are not presen
~Note that there are cases, not shown, for which the linb
5const crosses a window. In such regions, the attractor
mension decreases and then continues to grow once the
dow is passed.! As the sum of the exponents becomes po
tive, the attractor dimension saturates the dimension of
systemN.

Finally we validated these results using a differe
method. We tested several points in parameter space by
timating the attractor dimension from the time series gen
ated by a network and compare it to the estimation using
~A1!. The time series was recorded from a system with
same parameters and the attractor dimension was calcu
from the reconstructed phase space using the method of
relation integral@15#. The results confirm our hypothesis fo
the monotonic relation between the number of positive
ponents andb.

V. COMBINATION OF MONOTONIC AND
NONMONOTONIC FUNCTIONS

In this section we discuss the mixed case where the tra
fer function can be written in the following way:

f ~x!5 f m~x!1e f nm~x!, ~18!

where f m(nm) represents a monotonic~nonmonotonic! func-
tion ande is a mixing parameter~not necessarily small!. For
concreteness, assume thatf m(x)5tanh(x) and f nm(x)
5sin(x). Let x5bWW •SW and the weights are given by Eq.~6!
~taking f50 for simplicity!. Following the same develop
ments shown in@2,4#, we develop an asymptotic periodi
solution of the form

Sl5tanhFA cosS 2p

N
kl1BD1e sinA cosS 2p

N
kl1BD G ,

~19!

FIG. 8. AD as a function of the gain for a sine transfer functi
whereN517, b50, andf50. The solid curve is the AD and the
dashed line below represents the number of positive exponent
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whereA5A(b), B5B(b). The coefficientsA,B can be ob-
tained from the self-consistent equations:

A5 1
2 bNa(

r51

`

D~r!~A/2!2r21~r! !22, B50,

B5bNb(
r51

`

D~r!B2r21@~2r!! #21, A50, ~20!

where D(r)522r(22r21)B2r12er(21)r11 and B2r are
the Bernoulli numbers.

As described in@4#, when the gain value increases, t
system undergoes a transition from the trivial solution,Sl
50, to a state which is governed by one of the two poss
attractors: a fixed point (A50,BÞ0) or a periodic solution,
depending on the relation betweenbc1 ,bc2 ~the critical
value for the onset of each attractor!. At higher gain values
(b.bc1 ,bc2) both attractors are stable and the system w
flow to one of them, depending on the initial conditio
When the gain parameter is further increased, one obse
unstable dynamics of the type described in this paper.
mixing parametere controls the actual point from which th
parameter space is governed by the nonmonotonic funct

Finally, we note that it is easy to generalize this soluti
for fÞ0 and weights which contain more Fourier comp
nents„Eq. ~4! following @2,4#….

VI. DISCUSSION

In this paper we analyzed a class of neural networks in
context of time series generation and focused on the effec
the transfer function on long-term behavior. We suggeste
natural way to classify transfer functions into monotonic a
nonmonotonic functions. The class of monotonic functio
can generate chaotic dynamics; however, the weights sh
contain a nontrivial bias term and a phase. The chaos ca
regarded as fragile, i.e., in regions where unstable beha
can be observed, the parameter space is characterize
points around which the parameter vectors lead to a st
dynamics~limited windows!. As the size of the network in
creases, the structure of parameter space becomes mo
volved due to the appearance of longer cycles. On the o
hand, the class of nonmonotonic functions is capable of g
erating robust high-dimensional~chaotic! attractors. This
means that there exist regions of parameter space for w
slight changes in the vector of accessible parameters will
stabilize the system. Although the analysis presented in
paper was exemplified by an odd nonmonotonic function,
results we obtain, which are mainly related to the regime
b values where unstable behavior emerges, include e
functions as well@16#.

One must refer to another paper@17# that focuses on
searching robust chaos in recurrent neural networks u
weight space exploration. Their motivation and methods
fered from ours. However, their main result, which states t
robust chaos can be achieved using a nonmonotonic tran
function only, is in agreement with our conclusions.

Another aspect characterizing nonmonotonic functions
the potential to monotonically increase the attractor dim
sion over a broad range of parameters. This interesting e
is achieved by increasing the gain parameterb. Unless the
le
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path of the vector of parameters intersects the boundary
spine locus, the attractor dimension increases monotonic
with b until it saturates the dimension of the system. Fro
this point, one can no longer define the dynamics as an
tractor since a volume of phase space expands.

Based on these results we can formulate the follow
conclusion: A ‘‘perceptron SGen’’ with nonmonotonic tran
fer function can generate a chaotic attractor much more
ily than with a monotonic function. In addition, when th
chaos is robust, one can expect the learning process t
easier since the extended parameter space, which incl
the attractor dimension, is smooth in these regions.

We further showed that the results can be extended
transfer functions, which are combinations of monotonic a
nonmonotonic functions. The asymptotic stable attracto
developed similarly to the pure case of monoton
nonmonotonic functions. The structure of the unstable reg
is governed by the function that loses its stability in th
region. There are three possible scenarios: either one o
two types of functions loses its stability while the other r
mains stable or both functions lose their stability. The fi
two cases are actually covered throughout the paper.

The extension of the results to the case of multilayer n
works ~MLN ! raises new interesting questions, e.g., to w
extent our findings remain valid; how does the combin
perceptron SGens affect each other, namely, do they ac
stabilize the dynamics or does a chaotic unit maintain
behavior, thus reflecting its robust nature. Another issue
major importance is the attractor dimension of the ML
While a ‘‘perceptron SGen’’ can typically generate a 1
attractor in the stable regime, we saw that applying a n
monotonic transfer function to this network can gener
much higher and continuous attractor dimension. On
other hand, a ‘‘MLN SGen’’ can generate higher~integer!
attractor dimension in the stable regime~see @2,4,6#!. Do
‘‘MLN SGens’’ generate continuous high-dimensional a
tractors as well?
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APPENDIX

In order to characterize the parameter space numeric
we apply a rather straightforward method. For a dense m
of points in theb-b plane, we calculate the spectrum
Lyapunov exponents associated with the dynamics, fr
which we can obtain the stability of the attractor and
attractor dimension. This procedure is applied after the tr
sient and for several randomly chosen initial conditions. T
spectrum is estimated using an algorithm suggested by W
et al. @18#. Basically, the algorithm evolves an orthonorm
basis by multiplying each vector with the Jacobian matr
which is evaluated along the trajectory. To overcome
problem of exponential decreasing of the vectors associ
with smaller eigenvalues, the principal vectors are re
thonormalized frequently. This procedure ensures that
analysis does not run into roundoff errors. This algorith
measures the average exponential change of a volume a
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the trajectory in state space, using the rate of change in
principal vectors.

The attractor dimension is estimated using the Kapl
Yorke conjecture@11# that gives the following relation be
tween the~sorted! spectrum of Lyapunov exponentsl i (l1
.l2 . . . ) and theattractor dimensiondky ~information di-
mension!,

dky5n1

(
i 51

n

l i

uln11u
, ~A1!
ys

ev

ev
he

-

where n is defined by the condition( i 51
n l i.0 and

( i 51
n11l i,0.
We are aware of a problem associated with the Kapl

Yorke conjecture. In cases where the spectrum has s
very small exponents, it is possible to obtain a biased e
mation of the dimension since the sum described in Eq.~A1!
may fluctuate around zero due to one of the exponents
such cases, we take additional precaution to avoid this p
lem.
n
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